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Abstract

Many papers in the medical literature analyze the cost-effectiveness of screening for diseases

by comparing a limited number of a priori testing policies under estimated problem parame-

ters. However, this may be insufficient to determine the best timing of the tests or incorporate

changes over time. In this paper, we develop and solve a Markov Decision Process (MDP) model

of diseases to produce a simple condition that tests for the cost-effectiveness of screening and

treatment decisions. Our model allows for an individual to change behavior based on aware-

ness of the disease. We provide a computationally efficient method for determining a dynamic

testing strategy that takes into account the results of the previous test for each individual. We

demonstrate the usefulness of the approach by applying the results to screening decisions for

Hepatitis C (HCV) using medical data, and compare our findings to current HCV screening

recommendations.
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1 Introduction

Recommended testing protocols to determine the presence of a disease have two major components.

First they must specify the population to be tested (i.e., universal testing or targeting). Second,

they must specify the timing and frequency of testing, that is, one-time testing, routine testing, or

intermittent testing. If it is the latter, they must also specify the time interval between tests and

whether the interval should be constant or varying. Although current guidance typically (though

not always) specifies the population to be tested, it is often silent as to the frequency and the

timing of testing. Timing can be important because it can impact whether testing is cost-effective

in a population.

Several criteria are considered when determining the optimal testing protocol. These include

the prevalence of the disease, accuracy of the test, whether awareness of disease status reduces costs,

the associated costs of the disease and test, and how the disease progresses. As disease prevalence

decreases, more persons must be tested to identify one case and thus targeting tests to at-risk

persons may be more efficient. However, if the cost of the condition is high relative to the cost of

the test, universal testing may be more cost-effective. Awareness of disease status will influence

costs if an effective intervention to treat the disease is available or if changes in personal behavior

can reduce future morbidity, mortality, or probability of transmission to others. For example, a

person who learns he has HCV may reduce his alcohol intake, which would reduce the probability

of future liver damage. In addition, if he were an injection drug user (IDU), he could participate

in a needle exchange program, which would reduce the likelihood of transmission to others.

Our motivation is to study testing and treatment protocols from a societal perspective. We

specifically focus on when to test an individual one or more times for a disease. We use a Markov

Decision Processes (MDP) approach to model the disease progression and testing decision, where

the reward function (or utility) is based on testing and treatment costs, quality adjusted life years

(QALY) defined in different stages of disease, and the cost of infecting other individuals. We also

allow the awareness of the presence of the disease to affect behavior, which can change the transition

probabilities and secondary infection costs after testing. We analyze the model for structural results

and find sufficient conditions to establish when testing (and treating) the disease is cost-effective,

and provide insights for healthcare practice. Most Markov models of diseases are typically analyzed

by employing Monte Carlo simulations or iterative procedures, however our goal in this paper is to
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provide a computationally efficient dynamic testing strategy that can be determined by calculating

a simple expression rather than requiring simulation or iteration. Moreover, since the testing

strategy is individual based, it incorporates results of previous tests and/or treatments, rather than

producing a policy for an entire population. We demonstrate the results for Hepatitis C (HCV)

using medical data, and compare our findings to current HCV screening recommendations. We

also solve for the threshold incidence for a population group beyond which testing is cost-effective.

The paper is organized as follows. A brief literature review is given in the next section. In

Section 3, we describe the Markov model for a general disease setting, and present structural

results for the MDP. In Section 4, we perform a numerical study for HCV using data obtained from

patient studies and health databases. Finally, we discuss the implications of our results and several

directions for future research in the last section.

2 Literature

We briefly summarize past work in the screening and treatment of diseases (particularly HCV)

as it relates to our work; this is in no way a complete review of the literature. There have been

numerous papers in the medical literature using Monte Carlo simulation of Markov models to

study disease progression or screening for other diseases (e.g., [1, 2, 3]) In most of these papers,

the progression of the disease is modeled as Markovian, and cost-effectiveness of a specified testing

policy is calculated using simulation across a population group with particular risk characteristics.

These medical papers that utilize simulation often address whether to screen the risk group in

question; few address when the screening should be performed, which can affect cost-effectiveness.

The definition of the risk group may include an age range (which is an implicit way of capturing

timing), but this may not be sufficient to capture the progression of the disease and behavior

over time. Example papers that examine cost-effectiveness of repeated screenings where a limited

number of testing policies are specified a priori include Brenner et al. [4], Michaelson et al. [5], Vijan

et al. [6], Paltiel et al. [7]. A paper that studies a large number of screening policies for disease is

Diehl et al. [8], where the authors evaluate over 1000 testing policies for breast cancer and identify

those in the efficient frontier using sample path enumeration over a Markov chain.

Analytical approaches may complement the simulations and help to provide additional insight
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on the characteristics of the testing policies. There are a few relevant papers that have used analytics

for screening decisions. Some of these papers relate to scheduling examinations or replacements

for machines in a production system, although papers in this area may have different assumptions

than those that focus on medical decisions. Early operations research approaches to this problem

include Smallwood and Sondik [9] and Kirch and Klein [10], both of which have perfect testing

information and stationary parameters; the first is an early example of partially-observable MDPs

(POMDP) with medical implications. Lee and Pierskalla [11] find that the optimal screening policy

is equally spaced if tests have perfect reliability, although other papers have found that spacing may

not be equal if parameters vary over time. Examples of papers that primarily focus on inspection of

production systems include White [12], Milioni and Pliska [13, 14], Ozekici and Papazyan [15], Yang

and Klutke [16]. One key assumption in these papers is that the testing procedure does not impact

the performance of the machine unless a corrective action is taken. An important aspect of our

problem is the behavioral change brought on by awareness of the disease gained through testing,

i.e., we can have “partial” treatment at no cost.

One of the more relevant papers from the inspection literature is Ozekici and Pliska [17], which

uses a simplified version of a POMDP that the authors then transform into an MDP with complete

information. The authors include false positives and negatives for the test but allow no death

from causes other than disease and no recurrence of disease (thus no testing after disease has been

treated). Houshyar [18] allows death from causes other than disease and formulates a screening

problem where the disease progression can be modeled with a discrete-time Markov chain. He gives

guidelines for calculating the costs as well as the transition probabilities and applies the model to

a disease but does not study structural results of the problem.

Zelen [19] focuses on medical screening timing along with follow-on papers Lee and Zelen [20] and

Lee et al. [21]. These papers focus on a weighted utility function that is linear in the probability

of finding a case and being incident between tests; they focus on testing when probabilities are

stationary over time, or not age-dependent, while in our case risk behaviors or disease progression

may depend on age. Other papers that study screening problems but have stationary parameters

include Monahan [22] and Parmigiani [23]. An interesting approach is taken in Kaplan and Satten

[24], where the authors use an analytical model similar to inventory modeling to show that the

interval between screenings depends on the prevalence in the population, and apply the model to
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HIV.

Parmigiani [25] uses a non-Markovian stochastic model to solve for test timing and takes into

account the effect of age on disease progression. Parmigiani [26] finds an exact solution with fallible

tests and two disease states. As in our case, the first paper only gains information about disease

presence by use of a test, although in the second paper tests take a random amount of time and do

not alter the state of the system. We also use a higher number of disease states and allow recurrence

of the disease and death from causes other than disease. Special cases with two (or even three)

states have also been considered in other papers including a few listed previously e.g., Eddy et al.

[27] and GrosfeldNir [28], although under different assumptions than the ones we use. Specifically,

GrosfeldNir [28] considers a production system and the only states are “good” or “bad”, and the

actions available are to replace to machine or not. Others have considered the special case of one or

two tests over the time horizon, such as in Parmigiani [25], Parmigiani and Skates [29], Monahan

[22]. In our case we are able find explicit conditions for a dynamic testing and/or treating strategy

to be beneficial. That is, we do not restrict the number of tests beforehand.

The subject of using MDPs and POMDPs to model medical screening problems is discussed in

Hauskrecht and Fraser [30], where POMDPs may be used to capture informational aspects. As the

authors state, even the definition of the POMDP may be difficult for a disease, and the number

of transitions and probabilities to define can become “practically impossible”. They use a hybrid

POMDP with an MDP and use approximations to solve it with data from ischemic heart disease,

but they point out that other structural refinements are possible to make the models reasonable to

define and solve.

Several researchers have Modeled the treatment of HCV and have, in general, found it to be

cost-effective for persons who are known to have the disease Kim et al. [31], Salomon and Goldie

[32]. The literature on testing for HCV is much less clear. For example, Castelnuovo et al. [33]

use a decision analytic model to determine that testing is cost-effective in injection drug users;

Gordon [34] also reports that testing can be cost-effective for high-risk groups. However Plunkett

and Grobman [35] find screening of asymptomatic pregnant women for HCV infection is not cost-

effective. In addition, Singer and Younossi [36] found that routine HCV testing was not cost-

effective in asymptomatic, average-risk adults. Pereira and Sanz [37] used a Markov simulation

model to show that although testing blood donors for HCV was cost-saving for the health care
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system, screening of post-transfusion patients was not; this is likely because most HCV-infections

due to transfusions have already been identified. Note that the literature on cost-effectiveness for

screening of HCV does not explicitly consider the age as part of the decision process, which is a

factor we will consider in this paper.

Testing recommendations from public health agencies can also differ. For example, the US

Public Health Service (USPHS) and Infectious Diseases Society of America (IDSA) recommend

testing of all HIV positive persons for HCV Centers for Disease Control and Prevention [38]. The

US Preventive Services Task Force (USPSTF) recommends against routine testing for HCV in the

general population and makes no recommendation for populations with high risk for infection U.S.

Preventive Services Task Force [39]. The Centers for Disease Control and Prevention (CDC), on the

other hand, does recommend routine testing for population groups with a high risk for acquiring

HCV such as drug users or commercial sex workers Centers for Disease Control and Prevention [40].

However, none of these agencies make recommendations about the frequency or timing of testing.

Explicit consideration of timing could change the recommendations.

Our work in HCV testing and treatment differs from previous work in that we explicitly model

the timing decision of the testing and explicitly consider behavior change as a result of knowledge

of infection from testing. The former is possible because of the Markov decision process model that

we develop and study. In addition, we compare different strategies for the number of tests.

To summarize, our research contributes to the literature on medical screening by developing

and analyzing a special case of a POMDP model for the timing of a screening test for an infectious

disease that may have a long asymptomtic phase. Key aspects include a transition probability

matrix that changes with the actions and states to model behavioral changes. We find some

analytical results on the timing of disease screening and interpret these for policy implications.

3 Model and Structural Results

3.1 The Mathematical Model

We formulate the progression of the disease as well as the testing and treatment decisions as a

finite-horizon, discrete time, discounted MDP model. We allow the health states to be partially

observable, with the test providing the only update in information regarding the current health
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state. In the description of the model we will focus on the maximization of utility. The utility

is based on QALYs for the different states of health of a person as well as the cost of testing,

treating, and corresponding complications. Note that costs may be converted to QALYs using a

cost-effectiveness threshold, e.g., $50,000 per QALY Chapman et al. [41]. We assume that false

positive tests can result but a second test is available with higher accuracy, which reflects common

practice. In our base model we will analyze the model with a test that has high sensitivity but we

will describe how the model and results extend to tests with false negatives.

Let S ⊂ ({(i, k) | i ∈ {0, . . . ,H}, k ∈ {0, 1}} be the state space of our stochastic process. We

use i ∈ {0, . . . ,H} to denote the health state of the individual (note that in the remainder of the

paper we will use “health state” to refer to the first component of the state space). 0 is the state

in which the individual is healthy and H is the state in which the individual is dead, with the

other states representing disease stages that may have different utilities, transition probabilities, or

other characteristics. An individual’s belief about whether or not he is healthy is denoted by k; 0

is used for the case that he thinks he is healthy and 1 for the case that he knows that he has the

disease. The belief of the individual about his health state (e.g., determined by the prevalence in

the population to which the individual belongs) is only updated by the use of a screening test. This

simpler representation of a partially-observable MDP is used to capture the issue of awareness of

disease, and it reflects testing as the primary way to determine presence of a disease.

A = {NT, T1, T2, T1T2} denotes the action set and As denotes the feasible actions for every

s ∈ S, where As ⊆ A. The action NT denotes “do not test” option, T1 denotes “test but do not

treat if the individual is sick” option, T2 denotes “treat the individual if he is already known to be

sick” option, and T1T2 is used for “test and treat if the individual is sick” option. In our model, T1

is treated differently than T1T2, because in some cases the treatment may not exist, is expensive,

is not very effective, or may has side effects (in which case the patient might choose not to be

treated). Testing without treatment (T1) is a reasonable option (i.e., an improvement over not

testing) only if the awareness of the disease implies benefits other than treatment and cure. These

may include changes in utility, changes in probability of infecting others, or changes in progression

rates (see below). This also allows for partial treatments. Furthermore, the action T2 allows the

patient to delay his treatment (e.g., when the patient cannot be treated immediately due to an

existing health condition or when a patient who did not want the treatment just after the test

7



result changes his mind later). We assume that the test results are immediately available and the

length of the treatment is negligible compared to the decision epoch. Hence, we allow transitions

to occur at the beginning of the decision epoch when a test and/or treatment action is taken.

T = {0, . . . , N} is the set of (finite) decision epochs. Decision epochs can be years, months

or even days depending on the disease. In addition, the number of decision epochs might change

with respect to the problem. For example, when modeling certain diseases, decisions are made

every year (e.g., annual exams) and the number of decision epochs is chosen in accordance with

the age after which an individual’s utility is negligible, while in other cases shorter time periods

are desirable.

rt(s, a) is defined to be the utility of taking decision a in state s and decision epoch t. It includes

the QALYs of different health states and the cost associated with the likelihood of infections to

other people (if the disease under consideration is infectious). The cost associated with infections

would be primarily for secondary infections, since for many diseases this captures the majority of

the reduction of QALYs. It is also a standard way of including QALYs for diseases like HCV Singer

and Younossi [36] and HIV Paltiel et al. [7]. Finally, we assume that the costs of a test are only

immediate costs. p(s′|s, a) denotes the probability of going to state s′ from state s, when decision a

is taken. The nonstationary probability transitions are considered in the numerical results section.

Let π = {π0, . . . , πN} ∈ Π be a policy where Π denotes the set of all policies and πt is the action

at time t ∈ {0, . . . , N}. We assume πN = NT for all π ∈ Π. We are interested in finding a policy

that maximizes the total discounted expected utility over the horizon. The objective function is

thus

max
π∈Π

IEπ

{

N
∑

t=1

λtrt(s, πt)
}

,

where 0 ≤ λ ≤ 1 is the discount factor. Let uπ
t (s) = rt(s, πt) +

∑

j∈S λp(j|s, πt)u
π
t+1(j). In other

words, uπ
t (s) is the total utility from decision epoch t onwards under policy π if the system is in

state s at that time. Let bπ
t (s) denote the probability that the system is in state s at time t when

policy π is used. Then, IE[uπ
t ] can be calculated as

∑

s bπ
t (s)uπ

t (s). Furthermore, it should be noted

that IE[uπ
0 ] = IEπ

{

∑N
t=1 λtrt(s, πt)

}

.

In the remainder of this paper we study a special class of diseases with two disease stages (in

addition to healthy and death states). By considering this simpler class of diseases, we are able to
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find closed-form expressions in terms of the problem parameters that determine whether or not it

is beneficial to test and/or treat the person at a specific time. This type of Markov model might

be appropriate for a disease such as HCV or Chlamydia, which has an earlier asymptomatic stage

and a later symptomatic stage in some patients.

The state space for the special class of diseases that we are considering is S = {(0, 0), (1, 0), (1, 1),

(2, 1), (3, 0)}. State (0,0) denotes the healthy state, state (3,0) denotes the death state, and the other

states represent the different stages of the disease as well as the awareness of the patient as described

previously. We assume that once the disease reaches stage 2, the individual is aware of it and the

condition causes some irreversible damage (e.g. blindness due to glaucoma or decompensated

cirrhosis due to HCV). The feasible actions are as follows:

As =



















{NT, T1, T1T2} if s ∈ {(0, 0), (1, 0)},

{NT, T2} if s = (1, 1),

{NT} if s ∈ {(2, 1), (3, 0)}.

Note that testing is a feasible option if the patient is not aware of his condition and treating is

a feasible option if the disease is in a reversible stage. Since rt(s, a) is composed of QALYs, cost

of interferon therapy, cost of testing, and other HCV related costs which do not vary significantly

with age, rt(s, a) = r(s, a) for all t ∈ {0, . . . , N}. The discount factor λ < 1 applied to r(s, a) acts

on both the QALYs and costs equally which is the standard way to ensure present QALYs and

costs are vlaued more than future QALYs and costs (see, e.g., Paltiel et al. [7], Hornberger et al.

[42]). We let r(s,NT ) = Rs, and we subtract the cost of testing and/or treatment from this value

whenever any action other than NT is chosen. In other words, Rs denotes the utility of being in

state s when there are no testing and treatment costs. We let R(3,0) = 0, hence uπ
t ((3, 0)) = 0,

for all t ∈ {0, . . . , N} and π ∈ Π (i.e., if the patient dies before the end of the last decision epoch,

the remaining utility associated with the rest of his life is equal to zero). Let c0 be the cost of

testing, c1 be the cost of treating the patient (in disease stage 1), v1 be the success probability of

the treatment (in disease stage 1). If the treatment is successful, the health state of the patient

becomes 0; if the treatment is not successful, the health state of the patient stays the same (stage

1) and the awareness element of the state space takes the value 1. The elements of the probability
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transition matrix under action NT are as follows:

Ps,s′ =







pij if s = (i, 0), s′ ∈ {(j, 0), (j, 1)} for j ≥ i,

qij if s = (i, 1), s′ = (j, 1) for j ≥ i.

We assume that there is no direct transition to disease stage 2 from the healthy state.

The following lemma is used throughout the paper and its proof is immediate from backwards

induction.

Lemma 1. Let π and π′ be two policies that might differ after time t and agree otherwise. If

IE[uπ
t ] ≥ IE[uπ′

t ], then IE[uπ
0 ] ≥ IE[uπ′

0 ]. In other words, the policy that is better at time t is a better

policy.

In the remainer of this section, we determine sufficient conditions for interventions (testing

and/or treatment) to be cost-effective. Let us define fl(x1, x2) for l ∈ {1, . . . , 6} and x1, x2 ∈

{0, . . . , N} as follows: 1

f1(x1, x2) = −c0

(px2−x1

00 (p11 − p00 − p01) + px2−x1

11 p01

p01(p
x2−x1

11 − px2−x1

00 )

)

+ (R11 − R10)
(1 − (λp11)

N−x2+1

1 − λp11

)

,

f2(x1, x2) = −c1 + v1R00 − v1R11 + v1

(

R00 − R10
p01

p11 − p00

)(λp00 − (λp00)
N−x2+1

1 − λp00

)

−v1

(

R11 − R10
p01

p11 − p00
+ R21

p12

q22 − p11

)(λp11 − (λp11)
N−x2+1

1 − λp11

)

,

f3(x1, x2) = f1(x1, x2) + f2(x1, x2),

f4(x1, x2) = −c0

(px2−x1

00 (p11 − p00 − p01) + px2−x1

11 p01

p01(p
x2−x1

11 − px2−x1

00 )

)

+ R21(
p12

q22 − p11
−

q12

q22 − q11
)
(λq22 − (λq22)

N−x2+1

1 − λq22

)

+
(

R10 − R21(
p12

q22 − p11
−

q12

q22 − q11
)
)(λq11 − (λq11)

N−x2+1

1 − λq11
−

λp11 − (λp11)
N−x2+1

1 − λp11

)

,

f5(x1, x2) = −c1 + v1R00 − v1R11 + v1

(

R00 − R10
p01

p11 − p00

)(λp00 − (λp00)
N−x2+1

1 − λp00

)

+v1R10

(

(
p01

p11 − p00
)
(λp11 − (λp11)

N−x2+1

1 − λp11

)

−
1 − (λq11)

N−x2+1

1 − λq11

)

−v1R21(
q12

q22 − q11
)
(λq22 − (λq22)

N−x2+1

1 − λq22
−

λq11 − (λq11)
N−x2+1

1 − λq11

)

,

f6(x1, x2) = f4(x1, x2) + f5(x1, x2).

1For simplicity, we only provide the following expressions under the assumption p00 6= p11 6= q22 (which holds in
our numerical results section). The derivations provided later in the paper can be used to obtain similar expressions
when p00 = p11, p11 = p22 or p00 = p22.
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The expressions above are proportional to differences between the utility-to-go functions under

different actions at time x2, given that the last intervention was at time x1. More details about

their calculations are given in the proofs of the theorems below. The following theorems provide

conditions for cost-effective testing and treatment strategies when false negatives do not occur.

Theorem 1. If the individual was last tested and/or treated at ti (where t0 = 0) and awareness of

the disease affects only the immediate utilities, then the following strategy is cost-effective:

1. If he is healthy, or treated successfully at time ti, then it is cost effective to test him (and treat

him if he is sick) at time ti+1 if f1(ti, ti+1) ≥ 0 (f3(ti, ti+1) ≥ 0).

2. If he is tested to be in disease stage 1 but not treated at time ti, then it is cost effective to

treat him at time ti+1 if f2(ti, ti+1) ≥ 0.

Proof: Let π be a policy that satisfies πti+1
= NT for t > ti. Backwards induction shows that

uπ
ti+1

((0, 0)) = R(0,0)

N
∑

i=ti+1

(λp00)
N−i + R(1,0)p01

N−1
∑

i=ti+1

λN−i

N−i−1
∑

j=0

p
j
00p

N−i−j−1
11

+R(2,1)p01p12

N−2
∑

i=ti+1

λN−i

N−i−2
∑

j=0

p
j
00

N−i−j−2
∑

k=0

pk
11q

N−i−j−k−2
22 ,

uπ
ti+1

((1, 0)) = R(1,0)

N
∑

i=ti+1

(λp11)
N−i + R(2,1)p12

N−1
∑

i=ti+1

λN−i

N−i−1
∑

j=0

p
j
11q

N−i−j−1
22 ,

uπ
ti+1

((1, 1)) = R(1,1)

N
∑

i=ti+1

(λq11)
N−i + R(2,1)q12

N−1
∑

i=ti+1

λN−i

N−i−1
∑

j=0

q
j
11q

N−i−j−1
22 ,

uπ
ti+1

((2, 1)) = R(2,1)

N
∑

i=ti+1

(λq22)
N−i.

1. First, assume that the individual is healthy at time ti (either his test result shows that he is

healthy or he is treated successfully). We will compare the policies π and π′, where π′
t = πt

for t ≤ ti, π′
ti+1

= T , π′
t = NT for t > ti and t 6= ti+1. When policy π′ is used, we obtain the

following:

uπ′

ti+1
((0, 0)) = −c0 + uπ

ti+1
((0, 0)), uπ′

ti+1
((1, 0)) = −c0 + uπ

ti+1
((1, 1)), uπ′

ti+1
((2, 1)) = uπ

ti+1
((2, 1)).
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We then find the expected values of utility-to-go functions as

IE[uπ
ti+1

] =
(

p
ti+1−ti
00

)

uπ
ti+1

((0, 0)) +
(

p01

ti+1−ti−1
∑

j=0

p
j
00p

ti+1−ti−j−1
11

)

uπ
ti+1

((1, 0))

+
(

p01p12

ti+1−ti−2
∑

j=0

p
j
00

ti+1−ti−j−2
∑

k=0

pk
11p

ti+1−ti−j−k−2
22

)

uπ
ti+1

((2, 1)),

IE[uπ′

ti+1
] =

(

p
ti+1−ti
00

)

uπ′

ti+1
((0, 0)) +

(

p01

ti+1−ti−1
∑

j=0

p
j
00p

ti+1−ti−j−1
11

)

uπ′

ti+1
((1, 1))

+
(

p01p12

ti+1−ti−2
∑

j=0

p
j
00

ti+1−ti−j−2
∑

k=0

pk
11p

ti+1−ti−j−k−2
22

)

uπ′

ti+1
((2, 1)).

Some algebra shows that IE[uπ′

ti+1
] ≥ IE[uπ

ti+1
] if f1(ti, ti+1) ≥ 0. Since π and π′ agree before

time ti+1, Lemma 1 shows that IE[uπ′

0 ] ≥ IE[uπ
0 ].

Similarly, we compare two policies π and π′′, where π′′
t = πt for t ≤ ti, π′′

ti+1
= T1T2, π′′

t = NT

for t > ti and t 6= ti+1. When policy π′′ is used, we obtain the following:

uπ′′

ti+1
((0, 0)) = −c0 + uπ

ti+1
((0, 0)), uπ′′

ti+1
((1, 0)) = −c0 − c1 + v1u

π
ti+1

((0, 0)) + (1 − v1)u
π
ti+1

((1, 1)),

uπ′′

ti+1
((2, 1)) = uπ

ti+1
((2, 1)).

We then find the expected values of utility-to-go functions as above and some algebra shows

that IE[uπ′′

ti+1
] ≥ IE[uπ

ti+1
] if f3(ti, ti+1) ≥ 0. Since π and π′′ agree before time ti+1, Lemma 1

shows that IE[uπ′′

0 ] ≥ IE[uπ
0 ].

2. We compare two policies π and π′′′, where π′′′
t = πt for t ≤ ti, π′′′

ti+1
= T2, π′′′

t = NT for t > ti

and t 6= ti+1. When policy π′′′ is used, we obtain the following:

uπ′′′

ti+1
((1, 1)) = −c1 + v1u

π
ti+1

((0, 0)) − v1u
π
ti+1

((1, 1)), uπ′′′

ti+1
((2, 1)) = uπ

ti+1
((2, 1)).

Some algebra shows that IE[uπ′′′

ti+1
] ≥ IE[uπ

ti+1
] if f2(ti, ti+1) ≥ 0. Since π and π′′′ agree before

time ti+1, Lemma 1 shows that IE[uπ′′′

0 ] ≥ IE[uπ
0 ].

The proof of the following theorem is similar to the proof of Theorem 1, hence it is omitted.

Theorem 2. If the individual was last tested and/or treated at ti (where t0 = 0) and awareness of

12



the disease affects only the disease’s progression, then the following strategy is cost-effective:

1. If he is healthy, or treated successfully at time ti, then it is cost effective to test him (and treat

him if he is sick) at time ti+1 if f4(ti, ti+1) ≥ 0 (f6(ti, ti+1) ≥ 0).

2. If he is tested to be in disease stage 1 but not treated at time ti, then it is cost effective to

treat him at time ti+1 if f5(ti, ti+1) ≥ 0.

The proof of the theorems above show that if there exists a time t1 such that it is cost-effective

to test(and/or treat) the individual, assuming that there will be no other interventions later on,

then this action should be taken at time t1. Furthermore, if there exists a time t2 after time t1

such that the intervention at time t2 is better than doing nothing, then this intervention should

be done as well. Similarly, at every ti+1, the decision is based on the health state at the time of

previous intervention and the remaining time until N . Note that the dynamic testing strategy of

the theorems above do not assume that ti and ti+1 are consecutive years, hence we are able to

study the cost-effectiveness of policies that are more general than annual or monthly exams.

Theorems 1 and 2 provide computationally efficient methods for determining the cost-effectiveness

of interventions. The computational effort associated with applying Theorems 1 and 2 consist of

calculating fl for some l ∈ {1, . . . , 6}. When using an iterative procedure on two policies that differ

at time t0, instead of Theorems 1 and 2 , one needs to determine the utility-to-go functions at time

t0 (which consequently requires finding the utility-to-go functions for all t0 ≥ t). Moreover, if two

policies differ from each other by more than one action, then one needs to repeat this procedure

multiple times. More specifically, when finding a cost-effective policy, the number of policies that

need to be compared with each other grows exponentially in iterative procedures.

Moreover, note that the testing strategy provided in Theorems 1 and 2 is dynamic and changes

according the patient’s history. These features provide a further improvement over current policies

that consider equally spaced tests for all members of a (sub)population.

Note that the previous theorems assumed that awareness of the disease affects either the imme-

diate rewards or the progression of the disease, which is true of many of the diseases. Simultaneous

changes of rewards and progression can also be incorporated into our model, but for the sake of

simplicity, exact expressions for that case are not provided here.
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Next, we consider the case when false negatives may occur. Specifically, let n1 denote the

probability that the test result is negative even though the person’s health state is 1. In this case,

for the sake of simplicity, we will provide the solution methodology for different cases instead of

exact expressions.

1. If the person’s test result is negative at time ti and he has not been tested since time ti−1,

we can find the real probabilities of being at each state under policy π as follows:

bπ
ti
((0, 0)) =

p
ti−ti−1

00 bπ
ti−1((0, 0))

p
ti−ti−1

00 bπ
ti−1((0, 0)) + n1

p01(p
ti−ti−1

11
−p

ti−ti−1

00
)

p11−p00
bπ
ti−1

((1, 0))

,

bπ
ti
((1, 0)) = 1 − bπ

ti
((0, 0)).

Note that bπ
ti
((0, 0)) + bπ

ti
((1, 0)) = 1 because if the person is not aware of the presence of the

disease, his health state is either 0 or 1. Now, let us compare two policies π and π′, where

πt = π′
t for t ≤ ti, πti+1

= NT , π′
ti+1

= T1, πt = π′
t = NT for t > ti and t 6= ti+1. uπ

t (s) are

the same as in the proof of Theorem 1 for every s ∈ S. When policy π′ is used, we obtain

the following:

uπ′

ti+1
((0, 0)) = −c0 + uπ

ti+1
((0, 0)), uπ′

ti+1
((1, 0)) = −c0 + (1 − n1)u

π
ti+1

((1, 1)) + n1u
π
ti+1

((1, 0)),

uπ′

ti+1
((2, 1)) = uπ

ti+1
((2, 1)).

We then find the expected values of utility-to-go function for π as

IE[uπ
ti+1

] = bπ
ti
((0, 0))

{(

p
ti+1−ti
00

)

uπ
ti+1

((0, 0)) +
(

p01

ti+1−ti−1
∑

j=0

p
j
00p

ti+1−ti−j−1
11

)

uπ
ti+1

((1, 0))

+
(

p01p12

ti+1−ti−2
∑

j=0

p
j
00

ti+1−ti−j−2
∑

k=0

pk
11p

ti+1−ti−j−k−2
22

)

uπ
ti+1

((2, 1))
}

+bπ
ti
((1, 0))

{(

p
ti+1−ti
11

)

uπ
ti+1

((1, 0)) +
(

p12

ti+1−ti−1
∑

j=0

p
j
11p

ti+1−ti−j−1
22

)

uπ
ti+1

((2, 1))
}

,

and the utility-to-go function for π′ can be calculated similarly. Then, we can find a condition

which guarantees that IE[uπ′

ti+1
] ≥ IE[uπ

ti+1
] will hold.

Similarly, if the test result at time ti indicates that he is healthy and we want to compare
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two policies π and π′′, where πt = π′′
t for t ≤ ti, πti+1

= NT , π′′
ti+1

= T1T2, πt = π′′
t = NT

for t > ti and t 6= ti+1. uπ
ti+1

(s) are as in the proof of Theorem 1, when policy π′′ is used, we

obtain the following:

uπ′′

ti+1
((0, 0)) = −c0 + uπ

ti+1
((0, 0)),

uπ′′

ti+1
((1, 0)) = −c0 − c1 + (1 − n1)

(

v1u
π
ti+1

((0, 0)) + (1 − v1)u
π
ti+1

((1, 1))
)

+ n1u
π
ti+1

((1, 0)),

uπ′′

ti+1
((2, 1)) = uπ

ti+1
((2, 1)).

Then, we can find the utility-to-go functions and a condition that guarantees that IE[uπ′′

ti+1
] ≥

IE[uπ
ti+1

] will hold.

2. If the individual is tested and found to be in disease stage 1 and the treatment is successful,

then it is similar to the previous case, assuming that after the treatment, the individual’s

health state can be determined accurately. We use bπ
ti
((0, 0)) = 1, and bπ

ti
((1, 0)) = 0 when

finding the expected utility-to-go functions and otherwise proceed as in case 1.

3. If the individual is tested and found to be in disease stage 1 and the treatment is not successful

(or he is not treated) at time ti, then it is similar to the case without false negatives when

the person is known to be in disease stage 1 at time ti.

The results of this section are applicable for modeling a broad class of diseases that have an

asymptomatic phase followed by a phase where the harm caused by the disease is irreversible. In the

following section, we implement our dynamic strategy on HCV and provide testing and treatment

suggestions for different subpopulations.

4 Applications of the Model to HCV

Hepatitis C virus (HCV) is a blood-borne disease present in 3.9 million people in the US (48% are

unaware) that can cause end stage liver disease (Centers for Disease Control and Prevention [43]).

It is the leading cause for liver transplants and the 10th leading cause of death in the US. It is

generally asymptomatic for decades, and many people are unaware of the presence of the disease

until end stage liver disease begins and treatment is no longer effective. HCV can be transmitted

during the asymptomatic period. There is currently no vaccine, and treatments are somewhat
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effective if caught early enough. Once infected about 85% will go on to chronic HCV which leads to

liver cirrhosis in over 20% of patients (National Institutes of Health [44]). The risk of hepatocellular

carcinoma is 17 times higher in patients with HCV (Donato et al. [45]). 8,000 to 10,000 deaths

per year in the U.S. are attributed to chronic liver disease, 40-60% of which are caused by HCV

(Centers for Disease Control and Prevention [46]). Prevalence in the overall population is 2% and

as high as 40-60% in injection drug users, which is twice that for HIV (Centers for Disease Control

and Prevention [47]). The high cost of treating the advanced disease, combined with the infectivity

and long asymptomatic period make HCV a candidate for screening programs.

Recall that Theorems 1 and 2 make the assumption that awareness of HCV infection effects

only the disease progression or the rewards. The theorems can be joined into one where the

progression and rewards can change simultaneously (although this new expression is simple to

calculate numerically, its parametric description is omitted here for the sake of brevity). For the

computational results that follow we use the results from Section 3.1 allowing disease progression

and rewards to change simultaneously. We populate the model with parameters specific to HCV.

The state space in this case is defined as:

• (0,0) = Healthy

• (1,0) = Infected (unaware)

• (1,1) = Infected (aware)

• (2,1) = Decompensated cirrhosis including associated complications (hepatocellular carci-

noma, liver transplant)

• (3,0) = Death

This is a simplified natural history of the disease obtained from Bennett et al. [48], Fattovich

et al. [49], Hornberger et al. [42], Singer and Younossi [36]. We develop a Monte Carlo simulation

of the disease progression in MATLAB. Individuals enter the system uninfected at age 15. We

then implement the following testing strategy: from ages 15-35, in each period, we check whether

taking any action is cost-effective by using the conditions in Theorems 1 and 2. Whenever it is

cost-effective to take an action, the respective action is taken at that time (i.e. test, test and treat,

treat). Ages 15-35 constitute the decision epochs which is a conservative estimate of the at-risk
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ages. After age 35, we add a final reward which represents the continued disease progression (or

lack thereof) until age 80 (or death) based on modified model parameters that reflect a higher

natural death rate and a lower incidence.

The model is based on QALYs and costs, which are associated with each health state as sum-

marized in Table 1. The utility in each period is calculated by converting the QALY associated

with that period to a cost where one QALY corresponds to $50,000, and then subtracting the dollar

costs of the screening test, treatment, and annual HCV related health costs. The values for the

transition probabilities were taken from the literature. Some of the transitions depend greatly on

the population considered. For example, injection drug users (IDUs) are at higher risk for ini-

tially acquiring HCV, while those who drink more than 50 grams of alcohol per day have faster

progression rates to decompensated cirrhosis. See Table 1 for the details on the probabilities and

rates. Whenever simplifications were made due to the nature of the model contained herein, we

used conservative estimates so that the results would not be biased towards increased testing.

Due to limited HCV incidence data in the literature, it is difficult to assess the age period

during an individual’s life when they are susceptible to HCV. Therefore, since the HCV risk groups

are very similar to that of HIV, we examined HIV incidence data to extrapolate the ages at which

individuals are at most risk for the overall population. According to the Centers for Disease

Control and Prevention [50], children under age 13 constitute less than 1% of persons living with

HIV through the year 2000 (mostly acquired through mother-to-infant transmission, which is not

studied in this model), and after age 55 HIV infection rates drop dramatically. According to the

United States Department of Health and Human Services [51], percent drug use rises dramatically

from age range 12-13 to age range 14-15 and remains high until age range 50-54. Consequently, we

assume individuals are susceptible to HCV infection during the entire time horizon of ages 15-35,

making it a conservative assumption that does not bias towards testing. Table 1 also indicates the

probabilities of infection for each risk group.

The cost of infecting others with HCV is calculated using the given data as the additional total

discounted lifetime cost of an individual as a result of acquiring HCV. We do this by subtracting

the total discounted cost of an individual with no possibility of acquiring HCV from the total

discounted cost of an individual who acquires HCV at age of 23 (since this data does not exist for

HCV, the value is based on the average age of HIV infection from Rosenberg et al. [52] because
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Table 1: Parameter values for model

Parameter Value Reference

Time Horizon of Decision ages 15-35 model assumption
Probability of Infection for IDU population 0.014 [47]

Probability of Infection for general population 0.0004 [43]
Probability of Infection after age 33 (all pops) 0 model assumption

Progression to decomp cirrhosis (alcohol) 0.0115 [53]
Progression to decomp cirrhosis (no alcohol) 0.0025 [53]

Death rate in decomp cirrhosis 0.22 [49]
Death rate due to other causes (ages 13-33) 0.0016 [54]
Death rate due to other causes (age > 33) 0.015 [54]

Probability of Treatment Success 54% [55]
% population heavy drinkers 4.9% [56]
Discount factor for QALYs 0.97 [36]
Discount factor for costs 0.97 [57]

Costs ($)

Decompensated Cirrhosis 25,691 [58]
Test 24.42 [59]

Treatment 22,896 [60]
Secondary Infections 50,939 calculated from model

QALYs

Infected Aware 0.98 [36]
Disease Complications 0.48 [42]

they have similar behavioral factors). Both calculations are made assuming no screening. The cost

of infecting others is thus calculated to be $50, 939, which is equivalent to a reduction of 1.1 QALYs

in our model. The expected cost of a secondary infection must be multiplied by the probability of

infecting someone else at each time step, which will depend greatly on the behavioral characteristics

of the individual in question and his age. Hence, we will assume that the probability of infecting

others is identical to the patient’s probability of acquiring HCV himself.

Most of the existing screening papers have not taken into account varying progressions due to

alcohol, although medical studies have found there can be a significant effect. We define a person

as a heavy drinker if he has two or more drinks per day (greater than 50 grams of alcohol). We

assume that once a person becomes aware of his infection, he reduces his drinking below the 50

grams threshold (we also study sensitivity to this factor), and he reduces his probability of infecting

others by half [36]. Behavioral change, then, not only affects the progression of the disease in a

patient, but also the rate of transmission to others.
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Figure 1 and Table 2 show the average rewards obtained through the Monte Carlo simulations

using the aforementioned testing strategy. Several scenarios are considered including testing the

overall and IDU populations under different alcohol and test acceptance assumptions. In the case

of the overall and IDU populations we assume 4.9% of the population drink excessively (estimated

using the 2001-2004 National Health and Nutrition Examination Survey) as the base case. Since

it may not be feasible to conduct an HCV test at the date specified by our testing strategy, we

also consider cases where there is a 70% chance of the test occurring when it is cost-effective to do

so. We refer to this scenario in the results as 70% test acceptance, where we assume 4.9% of the

population consumes alcohol excessively. We consider cases where individuals who drink excessively

and become aware of an HCV infection reduce alcohol consumption to less than 50 grams/day only

50% of the time, rather than the base case of always reducing alcohol consumption. Finally, in the

last column, we consider only individuals who do not consume alcohol excessively.

Testing is never cost-effective for members of the overall population who do not consume alcohol

excessively or when there is a only 50% alcohol reduction, and consequently the mean number of

tests for those is 0 (as is the mean QALY gain and cost). Testing occurs at age 20 and 25 for the

overall population base case (i.e. where 4.9% of the population consumes alcohol excessively and

the HCV test is administered when it is cost effective to do so). When we use a 70% acceptance

rate and the first test is missed, the testing strategy then recommends tests at age 21 and 26. If

the test at age 21 is also missed, then the testing recommends testing at age 22 only. For IDU

population, testing is cost-effective every year of the decision epochs (i.e., ages 16-35), regardless of

whether any tests are missed. It is clear from the figure that the largest QALY gains are a result

of high incidence and alcohol consumption.

The threshold incidence for testing (and treating when necessary) is 0.021% when 4.9% of the

population consumes alcohol excessively. In that case testing becomes cost-effective for age 27.

When no excessive alcohol consumption is assumed, the threshold incidence is 0.066% and testing

becomes cost-effective for age 24.
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Figure 1: Mean cost/QALY for the overall and IDU populations from implementing the dynamic
policy. Confidence intervals calculated using standard errors.

5 Conclusions

In this paper we have developed a Markov Decision Process (MDP) model for examining the

timing of testing with treatment as an option where the action can result in disease awareness

that changes the progression of the disease, and the MDP has partial updating of disease presence

based on testing. In particular, we find sufficient conditions for testing (and treating) to be cost

beneficial from a societal perspective. We consider dynamical screening and treatment policies that

are determined by the result of the individual’s previous test result as well as disease’s progression

Table 2: Results for the overall and IDU populations from implementing the dynamic testing policy
(standard errors are shown in parenthesis)

Mean QALYs Mean Mean number
gained Cost of tests

Overall population
Base case (4.9% Alcohol) 0.0026 (0.00027) 116.82 (3.1) 1.9826 (0.00026)

0.7 test accept rate 0.0028 (0.00026) 119.39 (3.2) 1.9701 (0.00032)
IDU Population

Base case (4.9% Alcohol) 0.1625 (0.0028) 3548.9 (42.4) 17.591 (0.0045)
0.7 test accept rate 0.1503 (0.0029) 3214.5 (40.9) 12.269 (0.0062)

50% alcohol reduction 0.1622 (0.0028 3551.1 (42.5) 17.591 (.0045)
No alcohol consumption 0.1401 (0.0023) 3663.6 (42.0) 17.591 (.0045)

20



and infectivity characteristics. Using the theorems developed in this paper, the cost-effectiveness

of testing and/or treatment can be determined by evaluating a closed-form expression rather than

requiring a simulation or an iterative procedure.

We use the MDP model in the case of Hepatitis C to study the timing of test and treatment

actions for various populations. We use medical data to estimate the progression of the disease,

prevalence, health costs, and infectivity. We find that both test-only and test-and-treat options

are cost effective for IDU populations. The additional QALYs gained as compared to no testing

can be as high as 0.15 for test-and-treat option for IDUs. Regarding the general population,

our recommendations find that testing and treating meets the $50,000/QALY cost-effectiveness

threshold, albeit not by much.

We also find that uniform times between tests is not necessarily the best strategy when multiple

testing is used; this can be driven by risk behaviors that change over time as well as the health

costs. We find that incorporating behavior has an impact on recommendations, but that the IDU

population should be tested even if there are no behavioral changes from awareness of having

HCV. We also find that the number of actions tends to decrease with the effectiveness of behavioral

changes in drinking, and that the effectiveness of alcohol behavior change can impact whether

test-and-treat is better.

Our analysis also supports the CDC recommendations to test and treat groups with high risk of

acquiring HCV. The overall population group is not currently addressed by CDC recommendations

since most analysis has not incorporated the effect of alcohol behavior change on progression of

Hepatitis C. We also add to the literature by specifying ages for testing of other populations. We

have also studied cost-effectiveness using cost minimization (including productivity losses) as the

objective or examining the ratio of cost paid to utility gained, and we find similar recommendations

on which groups should be tested and how often.

For future work, it would be useful to apply our MDP for determining when to test or treat

to other diseases with different characteristics. The research also suggests that examining dynamic

screening policies (e.g., as in Diehl et al. [8]) could be beneficial for some diseases. Further analysis

of MDPs could also suggest other types of policies to consider.
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